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ABSTRACT 

We classify, up to a linear-topological isomorphism, all separable Lp-spaces, 

1 <_ p < oc, associated with yon Neumann algebras of type I. In particular, 

any Lp-space associated with an infinite-dimensional atomic yon Neumann 

algebra is isomorphic to lp, or to Cp, or to Sp = ( ~ = x  C~),p. Further, 
any Lp-space, p E [1,cx~), p ~k 2 associated with an infinite-dimensional 
yon Neumann algebra M of type ] is isomorphic to one of the following 
nine Banach spaces: 

lp, Lp, Sp, Cp, Sp �9 Lp, Lp(Sp), Cp @ Lp, Lp(Cp), Cp ~ Lp(Sp). 

In the case p = 1 all the spaces in this list are pairwise non-isomorphic. 

0. I n t r o d u c t i o n  

Let A4i be a semifinite von Neumann  algebra, let Ti be a normal  faithful semifinite 

t race on M i ,  let .~ti be a *-algebra of all ~i-measurable operators  affiliated with 

AAi, 1 -- 1,2 (see [FK]). Lp(./~4i,Ti), 1 <_ p < co, is the Banach space of all 

operators  A �9 2~4~ such tha t  Ti(]A[ p) < co with the norm I]AI]p :=  (Ti([A[P)) 1/p, 

where IA[ = ( A ' A )  1/2, i = 1, 2. The description of isometric maps  between Lp- 

spaces Lp(M1,  T1) and Lp(.Me, T2), p e [1, co), p r 2, is well-known (see IV]) and 

using this description it is easy to see (Corollary 1.5 below) tha t  the latter two 

spaces are linearly isometric, if and only if the von Neumann  algebras A41 and Jr42 
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are Jordan *-isomorphic. So, the isometric classification of non-commutative Lp- 

spaces coincides with the classification of von Neumann algebras, up to a Jordan 

.-isomorphism. In particular, there exist uncountably many non-isometric Lp- 
spaces associated with von Neumann algebras of type I. 

A completely different situation appears if we replace an isometry between 

Lp(M1, ~-1) and Lp(.Ad2, 7-2) by an isomorphism (= continuous linear-topological 

bijection). In this case, it is possible that Lp(.M1, T1) and Lv(J~42, T2), p C [1, oc), 

are isomorphic, although there is no Jordan *-isomorphism between AJ1 and Ad2. 

The following question arises naturally. 

What is the linear-topological classification of non-commutative Lp-spaces? 

Our motivation in considering this problem comes mainly from the following 

three sources: from the famous book of Banach [B] where it is established that 

the spaces lp and Lp are not isomorphic (unless p = 2), from Ch. McCarthy's 

result [M] that there is no isomorphic embedding of Cp into Lp (see also [GL]) 

and from the paper of J. Arazy and J. Lindenstrauss [AL] who showed that there 

is no isomorphic embedding of Lp into Cp. McCarthy's result was extended in 

[Su2] by showing that  there is no isomorphic embedding of Cp, 2 < p < cx), into 

any Lv-space associated with a finite yon Neumann algebra. 

Our main result in the present paper concerns the given question in the setting 

of separable Lp-spaces and von Neumann algebra of type I. 

THEOREM 0.1: Let 3A be an infinite-dimensional yon Neumann algebra of type 
I acting in a separable Hilbert space H, let T be a normal faithful semifinite 
trace on 3,t, let Lp(A,t, T), p E [1, OO), p ~ 2, be the Lp-space associated with 

A4. Then 
(a) the space Lp(j~d, T) is isomorphic to one of the following nine spaces: 

(L) Ip, Lp, Sp, Cp, Sp @Lp, Lp(Sp), Cp @Lv, Lp(CB), Cp @ Lp(Sp); 

(b) i f (E,  F) is a pair of distinct spaces from (L), which does not coincide with 
the pair (Lp(Cp), Cp | Lv(Sv) ), then E is not isomorphic to F; 

(c) all nine spaces from (L) are pairwise non-isomorphic, provided p = 1. 

Remark 0.2: If (E, F)  coincides with the pair (Lp(Cp), @ (9 Lp(Sp)), then it is 

easy to see that  F is isomorphic to a complemented subspace of E. The converse 

seems to be false and we conjecture that  the spaces Lp(Cp) and @ �9 Lp(Sp) are 

non-isomorphic as well, but at the moment we can confirm this hypothesis only 

in the special case p = 1. 
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In the first section we make some preliminary observations concerning non- 

commutative Lp-spaces, in particular it is proved that Lp(A/I1,T1) and 

Lp(,~42,T2), p r 2, are isometric if and only if there exists a Jordan 

,-isomorphism between M1 and AJ2. In the second section, we study the nine 

spaces listed in the assertion of Theorem 0.1, and prove parts (a) and (b) of 

this theorem. In the third section (via recent results concerning the Dunford- 

Pettis property in the preduals to yon Neumann algebras) we strengthen part 

(b) by showing that in the case p = 1, the space LI(C1) is not isomorphic to 

C1 (~ LI(S1), and this establishes part (c) of Theorem 0.1. Thus, part (c) of 

Theorem 0.1 yields a complete linear-topological classification of the preduals to 

yon Neumann algebras of type I. 

Our notation and terminology are standard. We refer to [LT 1,2] for Banach 

space theory, to [BR], [Sa], [SZ], [T] for yon i e u m a n n  algebras theory and to 

[FK], [Se] for non-commutative integration theory. 

Some results of the present paper were announced in [SC1,2]. The author 

thanks J. Arazy and V. Chilin for constructive discussions and P. Dodds for his 

interest. 

1. P r e l i m i na r i e s  

Recall that  the dual of Lp(M, T), 1 < p < CO, can be identified with Lq(A/[, T), 
p-1 + q-1 : 1. An element g of Lq(J~, T) determines a linear functional (., g) on 

Lp(Ad, ~') by the formula 
= 

Therefore Lp(J~, 7) is reflexive for 1 < p < (x). The (infinite-dimensional) space 

LI(A/[,~-) is not reflexive, the dual of LI(A,{,T) is ~4. Every clement g of j~4 

determines a linear functional on L1 (J~4, ~-) by the same formula as above. If J~4 = 

L~(0,  1) (respectively lo~ = /~(N)) and trace v is the integral with respect to 

Lebesgue measure m on the interval (0, 1) (respectively, with respect to counting 

measure on N) then Lp(J~[, T) coincides with Lp -- ip(O, 1) (respectively, Ip). If 

All = B(12.), i.e. 2~4 is the algebra of all bounded linear operators on 12 and T = tr 
is the standard trace on B(/2), then Lp(J~4, T) coincides with the Schatten-von 

Neumann p-class Cp of compact operators on Hilbert space 12. 

Let (en)~=l be a standard unit vector basis of 12 and let C~ denote the space 
e n of all operators A on the n-dimensional Hilbert space l~ = [ k]k=l with the norm 

]lA[]p = (tr(x*x)P/2) 1/p, in other words C~ = Lp(B(l~),tr). It is clear that the 

space 

= e e . . . e e . . . 
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can be identified with Lp(Af, ~-) where 

OO 

is the direct sum of von Neumann algebras B(l'~), n = 1, 2 , . . . .  

Below we consider infinite-dimensional Lp-spaces only and, if it is not specified 

directly, always assume that the index p belongs to [1, oo) and p r 2. 

PROPOSITION 1.1: If Lp(M,  T), 1 ~ p < co, is a separable Banach space, then 

there exists a separable Hilbert space H such that M is ,-isomorphic to a yon 

Neumann subalgebra of B(H) .  

Proo~ Recall the definition of the measure topology in A/[ generated by the 

trace T. This topology is defined by the fundamental system of neighbourhoods 

around zero {V(e, (f): e, ~ > 0} (see lEE]) where 

g(e ,  (~) -- {x C J ~ :  [[xp[].M _~ e, T(1 -- p)) < 5 for some p E 7)~ }; 

where [] �9 JIM is the C*-norm on M ,  ~ is a complete lattice of all projections 

from A/[ and 1 is the unit of A/[. It follows from [Sul], [Me] that if Lp(M, T) is 

a separable Banach space then M is separable in the topology T, and therefore 

(also by [Sul], [Me]) we conclude that  H = L2(M, v) is a separable Hilbert space. 

So, by [BR] Theorem 2.7.14, there is a normal ,-isomorphism r of Ad into B(H)  

such that  ~(2~4) = ~ ( M ) ' .  | 

PROPOSITION 1.2: Let M be a semiiinite yon Neumann algebra acting in a 

separable Hilbert space H. Then Lp(M,  T) is a separable Banach space. 

Proo~ It follows from [Sa] Proposition 2.1.10 that L I ( J ~ , T  ) is separable and 

the same arguments as in the proof of Proposition 1.1 complete the proof. | 

In the sequel, we shall always assume that  the von Neumann algebra A/[ acts 

in a separable Hilbert space H. It follows that M is a-finite (see [BR], [SZ] p.84, 

[Sa] p.80), in other words any family of mutually orthogonal projections is at 

most countable. 

Further, if 

U: Lp(J~41, T1) --+ Lp(J~42, T2) 

is a surjective isometry, then (see [Y]) there exists a unitary operator W E Ad2, 

a positive (possibly, unbounded) operator B affiliated with the center of ~4~ and 

a Jordan ,-isomorphism J: J~[1 ~ M2 such that 

U(T) = W B J ( T ) ,  T E Lp(.h/[1,"/-1) 13 J ~ l  
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and such that  

T2(BPJ(T)) = T 1 (T) 

for every positive T �9 A/I1. Suppose now that there exists a Jordan *-isomor- 

phism between J~I1 and Ad2 (not necessarily trace preserving). Does it follow 

that  Lp(JM1,T1) is isometric to Lp(A/12,~-2) for all 1 _< p < oo ? The affirmative 

answer is given below. 

PROPOSITION 1.3: Let 7 and u be semifinite normal faithful traces on a semifinite 

yon Neumann algebra 3,t. Then Lp(JM, ~-) and Lp(A4, u) are isometric. 

Proob By [Se], there exists a positive operator S affiliated with the center of 

M such that u(T) = ~-(ST) for every positive T E A4. We shall show that the 

map U from Lp(A4, u) into A4 defined by 

U(T) = S1/pT 

is a surjective isometry from Lp(Ad, u) onto Lp(3d, T). Indeed, since 

[S1/pTI p = ]St/plplTIp _- SITlP 

we have 

T(IU(T)I ~) = T(IS1/PTI p) = ~-(SITI p) = ~(ITIP).  

The latter means that U(T) e Lp(J~4,T) and IIU(T)IIL,(~,,) = I ITIIL, (m, . ) .  

Further, let z(S)  be the central support of the operator S. If z(S)  # 1, then 

there exists a projection Q �9 ~4 such that Qz(S)  = 0, 0 < u(Q) < c~. We have 

then v(Q) = ~r(SQ) = 7 (Sz (S )Q)  = 0. This contradiction shows that z(S)  = 1. 

Hence there is a positive operator S -1 affiliated with the center of 3,t. Let A be 

an arbitrary element from Lp(j~r ~-) and let 

T' = (S:I)I/PA. 

We have then 

u(IT'] p) = ~-(SS-1]AIP) p = I[Al lL, (~ , r  

It follows that  T '  E Lp(Ad, u) and, since U(T')  = A, it further follows that  U is 

a bijection. | 

PROPOSITION 1.4: Let (Adi,Ti) be two semitinite yon Neumann algebras 

equipped with faithful normal traces T~ and let J: A41 --+ A42 be a Jordan 
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*-isomorphism between them. Then Lp( .A41,T1)  and Lp(.A/I2,T2) a r e  isometric 

for all 1 < p < oc. 

Proos Since J is a completely additive map such that J (T )  > 0 if and only if 

T _> O, it follows that  the form v defined by setting 

v(T)  = T2(J(T)) T �9 .M1 

is a faithful weight on M1. Further, for an unitary operator u E M1 the operator 

J(u)  is a unitary operator from M2 ([BR] pp. 217-218) and therefore for any 

projection P �9 A/ll 

v(u*Pu)  = T2(J(u*Pu)) = T2(J(u)*J(P)J(u) )  -= T2(J(P)) =- v (P) .  

In other words v is a normal faithful semifinite trace on M1. By Proposition 1.3 

there exists an isometry U from Lp(M1, T1) onto Lp(M1, v) L Consider the map 

W from the set V - l ( L p ( . M l , V )  NM1)  C_ Lp(.MI,T1) into M2 defined by 

W ( T )  = JU(T) ,  T �9 v - l ( L p ( J ~ l , V l )  VIJ~l). 

It is clear that  W is an injective linear map. Since J ( A  n) = J (A)  n for every 

0 _< A �9 M1 and all n = 1 ,2 , . . .  we have 

IIJ(A p) - J(Pn(A))IIM~ = IIJ(A p) - P ,~ (J (A) ) I I~  

where Pn(t) = S'~i~=l air '~ is such that IltP - Pn(t)llL~(O,Ilall~) ~ O. Since 

[0, I lml l~d = [0, IIJ(A)II~]  

we get 

It follows that  

[]J(A) p - Pn(J(A))]]M2 -40 .  

J (A)  p = J ( A  p) 

for every 0 _ A E 2t41,p C [1,oo). Thus, for any T C Lp(MI,~-I) N .M 1 we have 

I]W(T)][P (~2.T2) = T 2 ( ] W ( T ) ]  p) -- T 2 ( ] J U ( T ) [  p) = T 2 ( ( J ( ] U ( T ) ] ) )  p) 

= T2(J(]U(T)]~)) -= v(]U(T)] p) = ]IT]] p Lp (.t,a 1 ,T 1 ) " 

It follows that  W sends U-I (Lp( .M~,T~)A  .M~) into Lp(J~42,T~)N J~42 and it 

is easy to see that  in fact it is a surjective isometry between those two spaces. 

Since Lp(fl4,,T~)N J~,  is dense in Lp(J~,,T~), i = 1,2 [CS] and since U -1 is 

an isometry we infer that W may be extended to a surjective isometry between 

Lp(J~I,T1) a n d  L p ( M 2 , T 2 ) .  ii 
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COROLLARY 1.5: Lp(.hdl, T1) and Lp(.Ad2, "/-2) are isometric for some p 6 [1, co), 

p r 2, if and only if there exists a Jordan *-isomorphism between 3dl  and JM2. 

For Banach spaces X, Y we use the notation X ~ Y, X ~ Y and Xc-~Y to 

denote that  X is isomorphic to Y, to a subspace of Y, or to a complemented 

subspace of Y, respectively. If X ~ Y, then 

d ( X , Y )  := inf{llTll, lIT-111: T is an isomorphism from X onto Y} < oo. 

We denote by lp(X), 1 _< p < 0% the space of all sequences x = (xl, x2 , . . .  ) with 
OO xj e X and E j = I  I]xJl[vx < oo normed by 

( oo \ 1/p 

lixlt,, x, :-- E blx,/l:) 
j = l  

It is easy to see that  Iv(X) ~ lp(Ip(X)) for every Banach space X and every 

p E [1, co). For the element f ( . )x  from the Bochner-Lebesgue space L ( X )  = 

L([0 ,  1],X) we shall employ the notation f | x. For all p 6 [1,oo), we shall 

freely identify the space Lp([0, 1], Lv(M,  r)) with the L -space associated with 

the von Neumann algebra ( L  (0, 1)| m | T) (see [BeMl, Lemma 6.2). 

The following proposition is proved by a simple application of the decomposi- 

tion method (see [LT 1], [Mi]). 

PROPOSITION 1.6: Let X , Y  be Banach spaces such that X ~ Y ,  Y~-~X and 

lp(X) ~ X for some 1 < p < co. Then X ~ Y. 

The proof of the following corollary may be easily obtained from Proposition 

1.6 and is therefore omitted. 

COROLLARY 1.7: / f X  is one of the spaces listed in Theorem 0.1 (a), then X 

l ( X ) .  

2. Parts (a) and (b) of  Theorem 0.1 

The following two propositions deal with the simplest subclasses of non- 

commutative Lp-spaces. 

PROPOSITION 2.1: If  M is a commutative yon Neumann algebra and T iS a 

normal faithful semifinite trace on A4, then Lp(J~, 7-) ~ Lp(O, 1), or Lp(A4, T) 

1 v �9 

Proof'. Since 34 is a finite, a-finite yon Neumann algebra, it follows that  there 

exists a finite faithful trace u on 3,t (see [SZ] E.7.4). Therefore, via Proposition 
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1.3, it suffices to prove the assertion of Proposition 2.1 for LB(A4, u). Let 

p = V{q: q E 7)~, q is an atom in P ~  }. 

If p = 1, then von Neumann algebra AJ is *-isomorphic to t , whence, via 

Proposition 1.4, 
Lp(M,T) ~ Ip. 

If p ~ 1, then A4 -- (1 -p )A4 | pA//. It is easy to see that pfl4 is *-isomorphic 

to L~(0, 1) (see, for example, [CS] Lemma 4.1), whence, via Proposition 1.6, we 

have 

Lp(M,  T) ~ Lp. II 

Recall that M is called an atomic yon Neumann algebra if and only if 

V{q: q E p ~ ,  q is an atom in P ~ }  = 1. 

PROPOSITION 2.2: I f  ,h4 is an atomic yon Neumann algebra and T is a nor- 

mal faithful semifinite trace on jk4, then Lp(.h4, T) ~ l ,  or Lp(.M, T) ,~ S ,  or 

L p ( M ,  T) ~ Cp. 

Proof'. Let Z(~4) be the center of von Neumann algebra .A4 and let 

p~ :-- V{  p is an atom in 7)z(~): pA4 is of type I ,  for some n G N} 

and 

P2 := V{P  is an atom in 7~zt~): p~ t  is of type Ioo }. 

It is clear that p~ and P2 are mutually orthogonal central projections such that 

P~ + P2 = 1. Further, it is clear that 

.A,4 = plA,4 @ p~A,4 

where p ~ 4  is of type Ill" and p2A/t is of type Ioo. If P2 -~ 0, then p2A/[ = 

~ q~A/[ where q, C Pz(~) and q,A/[ is a factor of type I .  It easily follows (via 

Proposition 1.6) that Lp(p2~4 , 7) ~ Cp and, since Lv(P lM , T ) ~ C p ,  we get 

Lv(M,T) ~ C .  

If P2 = 0, then, depending on the fact whether the supremum of the indices n 

from the definition of Pl is finite or infinite, we have respectively L p ( M ,  T) ~ lp 

or Lp(A/[, T) ~ S . | 
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Remark 2.3: Recall that there is no isomorphic embedding of L into l (see 

[B]), of S into L (see [M], [GL], [P]), or of C into S (see [AL]). 

Let now A/I be a purely non-atomic von Neumann algebra, i.e. we shall assume 

that z~4 is atomic for some projection z E 7~z(~) if and only if z = 0. In this 

case, using IT] Theorem V.1.31 we may assert that ~4 is Jordan *-isomorphic to 

a (countable) direct sum of von Neumann algebras 

~ L~(0, 1)| B(Hn.), 

where B(H,~) is the algebra of all bounded linear operators over n-dimensional 

Hilbert space Hn~, 1 <_ n~ <_ ~ .  It now follows from Proposition 1.4 that 

L Lv(A,I,~-) is isomorphic to t h e / - s u m  of Banach spaces ~(C~ ). It is easy to 

see (via Propositions 1.6, 1.7) that either Lp(.M,T) is isomorphic to Lp (in the 

case when the supremum of indices n in the previous / - s u m  is finite), or to 

L ( S )  (when this supremum is infinite, but there are no infinite values of n), 

or to L(Cp)  (when there exists at least one infinite value of n). Thus, we have 

established the following result. 

PROPOSITION 2.4: I f .hi  is a purely non-atomic yon Neumann algebra of type 
I and z is a normal faithful semi~nite trace on A4, then Lp(At,z)  ~ L ,  or 
Lp(A4, ~-),~ L (Sp), or Lp(.M,T) .~ L (C ). 

Noting that  any von Neumann algebra of type I may be written as a direct 

sum of atomic and purely non-atomic yon Neumann algebras of type I (and any 

of those summands may vanish) we see that the proof of the first assertion from 

part (a) of Theorem 0.1 follows from the combination of Propositions 2.2, 2.4 

with Proposition 1.6 and Corollary 1.7. 

We shall now concentrate on part (b) of Theorem 0.1. It follows from Remark 

2.3 that  the first four spaces from (L) are pairwise non-isomorphic. Combining 

[AL], Theorem 6 with [M] (see also [GL]) we infer that  none of the last five 

spaces from (L) is isomorphic to any of the first four spaces from (L). Listing 

for convenience the last five spaces from (L) as 

(L') Sp @ Lp, Lp(Sp), Cp �9 Lp, Lp(Cp), Cp @ LB(Sp), 

we note that the first two spaces from (L t) are Lp-spaces associated with finite 

von Neumann algebras, whereas the last three spaces are Lp-spaces associated 

with non-finite von Neumann algebras. By [Su2], Corollary 3.3, it follows that  
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none of the last three spaces from (L') is isomorphic to any of the first two spaces 

from (LI). Thus, to complete the proof of part (b) of Theorem 0.1 we need to 

show only that  each of the following three couples 

(Sp @ Lv, Lp(Sp)), (Cp @ Lp, Lp(CR)), (Cp | Lp, Cp �9 Lp(Sp)) 

consists of non-isomorphic spaces. The latter fact will follow immediately from 

the following theorem. 

THEOREM 2.5: For any p E [1,2), the Banach space L (S~) cannot be 
isomorphically embedded into C @ Lp. 

Proo~ Suppose, contrapositively, that there exists an isomorphism T from 

Lp (Sp) into Up (~ Lp. Fix some positive integer n and some real r C (p, 2). 

We shall denote by r n the natural isometrical embedding of C~ into S,. Let 

eij, 1 < i , j  < n, be the element of Cp whose matrix has only one non-zero 

entry, namely 1 in the (i , j)-th place. Let/91 (respectively, P2) be the canonical 

projection from Cp @ Lp onto Cp (respectively, Lp). Let 

be a normalized basic sequence in Lp which is 1-equivalent to the unit vector 

basis (g,~)n~ 1 of l~ (see, for example, [LT 2] Corollary 2.s Given a pair of 

indices (i , j) ,  1 < i , j  < n, the sequence 

( ~  | 71"n(el.i))~x:)=l (~_ Lp(Sp) 

is a normalized basic sequence in Lp(Sp) which is still 1-equivalent to (gn)~=l 

and we either have 

(2.1) f]PIT(f~ | (e,j))][c, ' --+ O, 

or 

(2.2) IIPIT(L |  o(%))ilcp 0. 

If (2.1) holds, then passing to a subsequence we may further achieve that 

2rn+l 

(2.3) HP1T( 2-m/€ ~ fk |  -~0.  
k = 2 m + l  
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If (2.2) holds, then passing to a subsequence and relabelling if necessary, we see 

that the sequence 

is a basic sequence in C~ which is either equivalent to the unit vector 

basis of l ,  or that  of l:, (ek) ~=~ (see [AL] Theorem 1). It is easy to see that 

(t:)1T(f k | ~ (e,~)))k~ is not equivalent to the unit vector basis of I .  Indeed, if 

it were the case, then for some constant C > 0 and any positive natural N we 

have 
N 

C N  lip <- li ~ PIT(L  | ~ (e,~))H~. 
k=l 

N 

<-IIP, TII " II ~ -~L  | ~'.. (e,~)HLpC%) 
k : l  

N 

= IIP1TII. II ~g,~ll,,. 
k = l  

= I IP1TI I -  N1/r 
which for sufficiently large N contradicts the assumption r E (p, 2). Thus, if (2.2) 

holds, then (again passing to a subsequence and relabelling if necessary) we may 

assume that  there exists a constant K > 1 such that (P~ r ( L  | ~ (e, j)))~ is 
K-equivalent to ( e k ) ~  , in particular 

2rn+l 2m+l 

tlP1T(2 -'~/~ ~ f~| <K.2-'~/~.tl ~ e, ll~ 
k~2ra+l k~2~+l 

= K - 2 m/2-~/~ ~ 0, 

in other words (2.3) still holds. Obviously, an arbitrary subsequence of (f~)n~=l 

is again 1-equivalent to (gn),~_l and the latter fact enables us to repeat the 

arguments given above consecutively for all n 2 pairs of the indices (i , j)  (each 

time passing to a subsequence if necessary). Thus, we may assume that  (2.3) 

holds for every pair (i , j) ,  1 <_ i , j  <_ n. 
We set 

2m+l 

It it is clear that  

k=2T~-I 

2m-bl 

II~,,,ltL,, =i-~/~ll ~ g.~ll,, =2-'v".2"~/"=1 
k~2m+l  
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is isometrically isomorphic to C n for each k = 1 , 2 , . . . .  At the same time it 
P 

follows from (2.3) that 

IlP1T(uk |  (e~))[Icp -+0, a s k ~ c c  

for every pair ( i , j ) ,  1 < i , j  < n. It further follows that for given e > 0, n E N 

there exists an integer k o such that 

[IPlT(uk | ~,~(x))ll% < eIIT[I 

for every k > k o and every x E C n ~, I]xil% _< 1. It immediately follows that for 

sufficiently large k the, operator 

Tn := P2T][~ke,,~(~i3)]i<_,,~<_, ~ : [uk | 7r (e,~)],<,,j_<~ --+ L 

satisfies 

IIT,~xll% > (1--c)llVxll%.Lp, Vx [% 

In other words, the operator T~ is invertible, and the norm of its inverse does 

not exceed (1 - e) -1 lIT -1 II. Taking into account that 

3 _ , 3 _  

we arrive at the fact that T is an isomorphic embedding of C n 

(= [u~ | u (e,j)],_<,,~<~) into Lp such that 

sup IIT II. IITpll < 
n 

This contradicts [GL] (see also [P] Theorem 2.1, Remark 2.3) and it completes 

the proof of Theorem 2.5. | 
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3. Pa r t  (c) of Theorem 0.1 

To complete the proof of part (c) of Theorem 0.1 we need only show that the 

spaces 

El(C1) and C1(~L1($1) 

A tool to be employed for doing so is the Dunford-Pettis are non-isomorphic. 

property. 

Recall that a Banach space E is said to have the Dunfo rd -Pe t t i s  p roper ty  

if every weakly compact operator defined on E sends weakly compact sets into 

norm compact subsets, or equivalently, whenever (xn) and (f~) are weakly null 

sequences in E and E* respectively, we have 

A ( x n )  -- 0. 

This definition is due to Grothendieck [G] and goes back to a classical result of 

Dunford and Pettis [DP] which says that all LI(Q, T)-spaces have this property. 

Chu and Iochum proved in [CI] that if A4 is a finite von Neumann algebra of 

type I, then the predual of f14 has the Dunford-Pettis property. The latter fact 

will be used in the proof of the following theorem. 

THEOREM 3. ]: There is no complemented isomorphic copy of the Banach space 

L1(/2) in C 1 O L1(S1). 

Since C 1 contains complemented isomorphic copies of l:, we immediately derive 

from Theorem 3.1 the following corollary which asserts somewhat more than just 

the non-isomorphism of LI(Ct) and C1 G L~ (S~). 

COROLLARY 3.2: There is no complemented isomorphic copy of the Banach 

space L~ ( CI ) in C 1 @ L~ ( S~ ). 

Proof of Theorem 3.1: Suppose, contrapositively, that there exists a linear 

isomorphism 

T: Ll(12) --~ X 

where X is a complemented subspace of C1 | LI(S1), i.e. there exists a closed 

subspace Y of C1 @ LI(S1) such that 

X @ Y ..~ C1 (~ LI(S1). 

Recall that C1 @ LI(S1) is the predual of the yon Neumann algebra 

o o  

B(12) G ( L  | (= B(l:) @ (Lor @ ((~)B(I~)))) 
n = l  
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and also (see [DU]) that (Ll(12))* - - - -  L(l~).  Let P1 (respectively, P2) be the 
canonical projection from C1 @ LI(S1) onto C1 (respectively, LI(S1)). Let Q1 
(respectively, Q2) be the canonical projection from B(l=)@ (Lo~ | onto B(l:) 
(respectively, L | For any x �9 C1 @ LI(S1) and y �9 B(l=) @ (Loo | we 

have 

(3.1) (x,y> = (p,x, Qiy) + (p=z,Q=y). 

Assume for the moment that we have constructed two sequences 

U O0 ( ,),=1 C_Ll(l=) and (v,) ~,=1 C_L (la) 

satisfying the following four conditions: 

(A) 

(B) 

(c) 

I]ujllLl(,2 ) < 1, IIv llL (,=) < 1, 

a(il(12),i (12))-lim% = 0 ,  a( i  (12),i~(12)*)-lim% = 0 ,  
J J 

(Us, Vj) --~ O, 

and 

(D) IIP1T(uj)llcl --+ O. 

Then a contradiction may be obtained as follows. First of all note that (B) 

implies that 
a(X*, X**) - lim (T*)-1(%) = 0 

J 

and since 

X* @ Y* ~ (C1 @ LI(S1))*, X** @ Y** ~ (C1 @ LI(S1))** 

we have also 

o ' ( (C1  (:D L I ( S 1 ) ) * ,  (C1 (D L I ( S 1 ) ) * * )  - l i m  ( T * ) - l ( v ~ )  - -  O, 
J 

o r  

L * a(B(l:) @ (.IV" | L ), (B(l:) @ (Af | or ) - l i r a  (T*)-l(v~) = O. 
J 

We get immediately that 

T* --1 V (3.2) a(B(12)@(Af|174 ))* ) - l i m  Q=( ) ( ~ ) = 0 .  
J 
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Next note that (B) implies 

(3.3) ~(LI(S1), LI(S1)*) - l i m  P,T(us) = O. 
S 

Thus, it follows from (3.1), (3.2), (3.3), (A), (B), (D) and from the Dunford- 

Pettis property of the space LI(S1) that 

(T(uj), (T*)- l (vj ) )  = {P1T(us) + P2T(us) ,Ql(T*)-l(vs)  + Q2(T*)-l(vs)) 

= (PIT(uj),  Q, (T*)-l(vs)} + (P2T(us) , Q2 (T*)-l(vs)} 

(3.4) -+ 0. 

But (3.4) contradicts (C), since 

<T(u s ), (T*)-I  ("S)> = <Ui' VS >" 

V oo We shall construct the sequences (us)~ and ( s)s=~ using the sequence 
j = l  

(fj @ ej)j~=l C_ L, (12) 

where, as before, (e,~),~= 1 is the unit vector basis of 12 and (f,~),~=l is a normalized 

basic sequence in L1 which is 1-equivalent to the unit vector basis (g,~),~--1 of It, 

�9 (i ,  2). 

LEMMA 3.3: The sequence (fj | e/)~= 1 forms a Schauder basis of the Banach 

space [fj | ej]~_ 1 C_ L~ (12) which is equivalent to (gn)n~=l. 

Proof of Lemma 3.3: It follows from [LT 2] 1.d.6 that there exists a positive 

constant C such that for an arbitrary positive integer n and an arbitrary sequence 
Ol n of scalars ( s)j=~ we have 

n ?i 

II E ~sfs | e, ll~l(,., = II(E I~s:sl") ~/~ 
L 1 

j = l  S = l  

n 

-< ell Z " s f s  I1~, 
S=I 

n 

= c l l E - , g ,  ll,. 
j = l  

n 

-< c ' I I ( E  ' ' /~ 
.4=1 

n 

= c~l[ Z ~,:, | ~, II~,(,., 
j=l 
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oo V oo We first show how the required sequences (uj)j_l and ( J)~-i may be defined 
in the case when 

(3.5) [IP, T(fj | ej)llc, ~ O. 

If (3.5) is indeed the case, then we simply set 

% : = f i e % ,  % : = s g n ( f ~ ) |  

Indeed, the condition (D) clearly holds and, since 

I1%11 ,%) = = (uj,%) = 1 ,  

the conditions (A) and (C) are satisfied as well. The fact that 

a(Ll(l~),i ( l : ) ) - l imf j |  = 0  
J 

follows immediately from Lemma 3.3 and thus the first condition in (B) is 

satisfied. To see that 

a ( L  (l 2 ) , L  (l 2 ) * ) - a i m s g n ( f j ) |  = 0  
J 

we note that the linear map 

given by 

/3 (E(~ ,e , )  :---- Z ~ , s g n ( f j )  | e~ 
2:=1 j ~ l  

is bounded. Since o(12,l~) - limj ej = 0 we have also 

a(L (l:),n (12)*)-limvj =a(L (l:),L (12)*)-lim/3(ej)=O 
J J 

and the second condition in (B) is also satisfied. 
U oe To complete the proof of Theorem 3.1, we have to construct sequences ( j)~=~ 

V c~ and ( j)j=~ assuming that 

(3.6) [IP~T(fj | %) l l c~  ~ 0. 

If indeed (3.6) is the case, then (passing to a subsequence if necessary) we may 

assume that (P,T(L |  is a basic sequence in C, (see, for example, [LT 1]). 
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Hence, by [AL] Theorem 1, the sequence (/)1T(fj | contains a subsequence 
which is equivalent either to the unit vector basis in l,,  or to the unit vector basis 
in 12. By Lemma 3.3, there exists a constant C >_ 1 such that for any positive 

k integer n and any sequence ( ~)j=~ we have 

L 
j=l j=l 

< cIIPxTII �9 !1 Lg~, II,,. = cIIPITII n ' /~  

j=l 

O0 and this implies that the basic sequence (P~T(fj | ej))j=, does not contain any 
subsequence which is equivalent to the unit vector basis in l,. Therefore (again 
passing to a subsequence if necessary) we may assume that there exists a constant 

e oo oo K _> 1 such that (P,T(f~ N j))j=, is K-equivalent to (e~)~=~. In particular 

2J+1 2J-b' 

(3.7) lIP, T( Z S, | -< ~11 ~ ~,ll,= = ~ 2J/= 
i=2J + 1 i=2J + 1 

In this situation we set 

2J+' 

~, :=  (CK) -~ �9 2-J/~ ~ f, | 
i=2J + l 

We have (see the proof of Lemma 3.3) 

(3.8) 
25+' 

E gill,,. = K - 1  " 2 - J / r "  2 j / r  <- K - 1  

i=2J +I 

and 

2J+ 1 

(39) Ilu~llL,(,=) >_ c - ' ( c K )  -1 ,  2-J/~ll ~ g, ll,~ = g - ' c - 2  
i~2J+l 

2J+, For any j _> 1, the element uj belongs to the space L,([e,]~=2~+, ) C_ L,(12) and it 
follows from the usual Hahn-Banach Theorem that there exists an element 

2J+ 1 
,re 12j+l ( ~2:+1 (3.10) v~ -- E f~' @e, E n~ckL ,1,:~r " f l "  ~+1 C n 

i=2J+l  
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such that  

(3.11) I]vjllL~(,2 ) _< 1, 

and (see the estimate in (3.9)) 

(3.12) <~,~j> > I-K-~C-~. 
- 2  

U c~ It follows from (3.8), (3.11) and (3.12) that for the sequences ( j)j=~ and (v~)~=~ 
conditions (A) and (C) are satisfied. We have also (D) since (see (3.7)) 

2J+1 

IIPiT(~)ll~, < C - 1  2-~/~11 ~ e~ll,~ : C - ~  2 - ~ / ~  2 ~/~ -+ 0, as j -~  ~ .  

i=2J+l  

A moment of reflection shows that the first convergence in (B) follows from 

Lemma 3.3. The second convergence in (B) may be established along the same 

lines as earlier. Indeed, we may define 

~': l 2 -+ L (12) 

by 

j= l  j= l  

It follows from (3.10), (3.11) that  ~' is bounded and it further implies the second 

convergence in (B). This completes the proof of Theorem 3.1. | 

Remark 3.4: We conjecture that the answer to the question whether there are 
isomorphic embeddings of the space L1 (C1) into C1 @ L1 (S1) is negative. 
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